Machine Learning

Machine Learning #

stateDiagram-v2

    %% ===== CLASS DEFINITIONS (Math-based colours) =====
    classDef algebra fill:#cfe8ff,stroke:#1e3a8a,stroke-width:1px
    classDef probability fill:#d1fae5,stroke:#065f46,stroke-width:1px
    classDef geometry fill:#ffedd5,stroke:#9a3412,stroke-width:1px
    classDef logic fill:#ede9fe,stroke:#5b21b6,stroke-width:1px
    classDef category font-style:italic,font-weight:bold,fill:#aaaaaa,stroke:#374151,stroke-width:3px

    %% ===== ROOT =====
    ML: Machine Learning

    %% ===== SUPERVISED =====
    ML --> SL:::category
    SL: Supervised Learning

    SL --> Classification
    Classification --> NB:::probability
    NB: Naive Bayes

    NB --> KNN:::geometry
    KNN: k-Nearest Neighbours

    KNN --> SVM:::algebra
    SVM: Support Vector Machine

    SL --> Regression
    Regression --> LR:::algebra
    LR: Linear Regression

    LR --> NN:::algebra
    NN: Neural Network

    NN --> DT:::logic
    DT: Decision Tree

    %% ===== UNSUPERVISED =====
    ML --> USL:::category
    USL: Unsupervised Learning

    USL --> Clustering
    Clustering --> KM:::geometry
    KM: K-Means

    KM --> GMM:::probability
    GMM: Gaussian Mixture Model

    GMM --> HMM:::probability
    HMM: Hidden Markov Model

    %% ===== REINFORCEMENT =====
    ML --> RL:::category
    RL: Reinforcement Learning

    RL --> DM:::logic
    DM: Decision Making

Mathematical Legend

Algebra / Linear Algebra (Blue) #

Used heavily when models rely on:

  • Equations
  • Vectors
  • Hyperplanes
  • Weights

Examples:

  • Linear Regression
  • Neural Networks
  • Support Vector Machines (SVM)

Probability & Statistics (Green) #

Used when models are based on:

  • Likelihood
  • Distributions
  • Randomness
  • Bayesian thinking

Examples:

  • Naive Bayes
  • Gaussian Mixture Models (GMM)
  • Hidden Markov Models (HMM)

Geometry / Distance (Orange) #

Used when models depend on:

  • Distance
  • Similarity
  • Clustering in space

Examples:

  • k-Nearest Neighbours (k-NN)
  • K-Means

Logic / Decision / Optimisation (Purple) #

Used when models are based on:

  • Rules
  • Decisions
  • Reward and punishment
  • Tree structures

Examples:

  • Decision Trees

  • Reinforcement Learning


Home | Artificial Intelligence